Home Technology Culture Crossover: Researchers use AI to predict a film's success

Culture Crossover: Researchers use AI to predict a film's success

In our Culture Crossover series we pick up examples of projects that delightfully bridge the worlds of technology and culture. We’ll be reviewing exhibitions, giving you a heads up on cultural events or talks coming up in the UK and highlighting the best techy art.

To read more instalments of Culture Crossover click here.

© iStock/metamorworks
© iStock/metamorworks

Those who joke that Hollywood films are so formulaic they could be written by an algorithm may soon find there is more truth in their smears than they expected, after researchers discovered that they could predict the success of a movie with AI.

The team from Sungkyunkwan University in Seoul, South Korea, used the ratings on review aggregation website Rotten Tomatoes as the measure of a film’s success and the CMU Movie Summary Corpus of crowd-sourced plot summaries as the synopsis of its plot. They then used deep learning models to analyse the sentiment of each sentence in the summary.

If the combination of the audience and critic consensuses on Rotten Tomatoes was above 75 percent positive, the film was deemed to be a success. Any less than 65 percent and the film was considered not successful.  

Successful films such as Alice in Wonderland and Das Boot tended to have frequent sentiment fluctuations, whereas the fluctuations were less frequent in unsuccessful films, such as The Limits of Control and The Lost Bladesman.

Yun-Gyung Cheong, an associate professor in the college of computing at Sungkyunkwan University, admitted that the Rotten Tomatoes aggregator was not the most accurate measure of a movie’s success.

“The correct measure would be the ROI, which requires the total revenue and the investment cost, [for] which we couldn’t find reliable sources,” she told Techworld in an email. “To make it worse, we need to consider the inflation when the movies were released decades ago. Therefore, we used the review scores instead.

“While there are several movies review websites are available, we thought that the Rotten Tomato score system is best since it offers two types of scores; one by the audience and one by the professional critics. Unlike other 5-scale score systems, the Rotten Tomato scores suggests 60 percent as the threshold to classify fresh (successful in our words) and rotten (not successful). This was another reason we took the score system.”

Algorithmic filmmaking

The Sungkyunkwan University project is one of a growing number of attempts to algorithmically predict the success of a film. One of the most prominent exponents of the method is Belgian startup Scriptbook, which predicts a screenplay’s success by comparing the characteristics of the storyline to a dataset of thousands of scripts that have already been released and had their box office business measured.

At the 2018 Karlovy Vary International Film Festival in the Czech Republic, ScriptBook founder Nadira Azermai said that the system retroactively predicted 22 of the 32 Sony movies that had lost money between 2015 and 2017.

Los Angeles-based Cinelytic adds talent analytics to the mix. Its platform allows producers to swap one actor for another and find out how the casting change could affect the box office results.

‘+article.headline
+”;
listEl.prepend(‘

‘);
articleIndex++;
}
listEl.show();//show unit
});
});
})(typeof idguk.require !== ‘undefined’ ? idguk.require : require);

Leave a Reply

Your email address will not be published.